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A Dbrief review of the main properties of multiorbital Hubbard models for the Fe-based supercon-
ductors is presented. The emphasis is on the results obtained by our group at the University of
Tennessee and Oak Ridge National Laboratory, Tennessee, USA, but results by several other groups
are also discussed. The models studied here have two, three, and five orbitals, and they are analyzed
using a variety of computational and mean-field approximations. A “physical region” where the
properties of the models are in qualitative agreement with neutron scattering, photoemission, and
transport results is revealed. A variety of interesting open questions are briefly discussed such as:
what are the dominant pairing tendencies in Hubbard models? Can pairing occur in an interorbital
channel? Are nesting effects of fundamental relevance in the pnictides or approaches based on local
moments are more important? What kind of magnetic states are found in the presence of iron va-
cancies? Can charge stripes exist in iron-based superconductors? Why is transport in the pnictides
anisotropic? The discussion of results includes the description of these and other open problems in

this fascinating area of research.
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temperature superconductivity will be achieved if a deep
understanding of the Fe-based counterparts is reached.
The present special volume contains a variety of impor-
tant contributions to this topic covering several areas,
and for this reason our contribution will focus specifi-
cally on the research carried out by the group of Profs.
Moreo and Dagotto at the University of Tennessee and
Oak Ridge National Laboratory, as of November 2011.
Besides the authors of the present review, several other
close collaborators provided many fundamental contri-
butions to this effort, and all of them are properly cited
here. In view of this focus on results by our present group
and current and former collaborators, the Introduction
will contain only a brief generic summary of the sta-
tus of the Fe-based superconductors investigations, while
the bulk of the publication will focus on our results us-
ing multiorbital Hubbard models to study theoretically
the physics of these exciting compounds. It is impor-
tant to remark that this manuscript is not intended as
a full review of the theoretical studies of pnictides and
chalcogenides. For this reason, the number of references
is limited and, as already expressed, the results discussed
are basically those of our group. However, the readers
can easily reach most of the relevant publications on the
subjects that are addressed here by simply consulting
the cited literature, and the references therein. Another
important warning for the readers is that the tone of this
manuscript will be “informal” avoiding technicalities and
focusing on the intuitive aspects of the results. However,
once again, sufficient references are provided to help the
readers to follow the technical aspects if they wish to
penetrate deeper into the details of how the results were
obtained.

1.2 Brief introduction to Fe-based phenomenology

A typical example of the Fe-based superconducting fam-
ily of compounds is provided by LaO;_,F, Fe As, one of
the most studied pnictides in this area of research. The
record superconducting critical temperature of ~ 55 K
[7] has been achieved in a related compound SmOj-,-
F,FeAs. These values for the critical temperatures are
second only to those observed in the Cu-oxide fam-
ily of high critical temperature superconductors. Indeed
several aspects of the physics of the new Fe-based su-
perconductors echoes the properties of the cuprates:
(i) The cuprates are based on two dimensional planes
containing a square lattice of Cu ions connected by O
ions at the links [9]. Similarly, in the Fe-based supercon-
ductors the fundamental components in their structures
are also layers defined by a square array of Fe atoms,
but with atoms of other elements such as As, P, or Se, at
the center of each Fe plaquette, alternating above or be-
low the Fe layer. (ii) In both the cuprates and pnictides
the parent compound of the material presents magnetic
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order, although with different wavevectors (see below).
(iii) Evidence of an exotic pairing mechanism (meaning
non phononic) has been observed in the cuprates and
also in the pnictides and chalcogenides [10-12]. (iv) The
importance of Coulombic correlations between the elec-
trons is crucial for the cuprates, opening for instance a
Mott gap in the parent compound, and it has been con-
sidered also of considerable relevance for the pnictides in
several investigations [13-23]. (v) The pairing state is, in
both cases, a spin singlet [24-26]. (vi) In addition, simi-
larly as in the cuprates, a pseudogap was detected in the
pnictides [27-30].

On the other hand, both families of materials also dif-
fer in several aspects: (i) The parent compound is a Mott
insulator in the cuprates, but it is a (bad) metal in the
case of the pnictides (note that considerable excitement
has been generated quite recently by the discovery of
chalcogenide superconductors that appear to have insu-
lators as parent compounds, as will be discussed else-
where in this manuscript). (ii) In the magnetic ordered
state of the cuprates, the Cu spins form an antiferromag-
netic checkerboard arrangement while in the pnictides
the spin of the Fe atoms are ordered antiferromagneti-
cally in one Fe—Fe direction but ferromagnetically in the
other. (iii) The Cu 3d,2_,2 is the orbital that mostly con-
tributes to the Fermi surface (F'S) of the cuprates, while
both the Fe 3d,. and 3d,. form most of the FS sur-
face of the pnictides and, moreover, several researchers
argue that the contribution of the three remaining Fe
3d orbitals cannot be neglected. (iv) The cuprates have
a single F'S while the pnictides exhibit multiple FS’s,
which may include hole and electron-like pocket features.
Note also that the cuprates show Fermi “arcs” (or Fermi
“pockets”) particularly in the underdoped regime, and
thus far these exotic features have not been found in
the pnictides. (v) There is clear experimental evidence
showing that the pairing operator in the cuprates has d-
wave symmetry and exhibits nodes at the FS. However,
the symmetry of the pairing operator in the pnictides is
controversial. On the experimental side, the results re-
garding the properties of the pairing operator seem to
depend both on the material studied and on the experi-
mental technique used. For example, several experimen-
tal investigations suggest the presence of nodes in the
superconducting gap [24, 25, 31-39]. This is reminiscent
of the nodes that appear in the d-wave superconducting
state of the high-T. cuprates. However, many other in-
vestigations indicate nodeless superconductivity [40-44].
On the theory front, several proposals for the dominant
pairing tendencies, including s and d states, have been
made [45-55].

To address the physics of these compounds theoreti-
cally ab-initio calculations based on the standard LDA
approximation have been carried out, but this type of
approach has limitations particularly if electronic corre-
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lation effects are of some relevance. Moreover, certainly
LDA cannot address the study of the superconducting
tendencies and pairing channels since they are beyond
the scope of those ab-initio methods. For this reason, at
present considerable interest is focusing more and more
into model Hamiltonians investigations. This brings an
important new challenge with respect to previous studies
for the cuprates: for the pnictides and chalcogenides a
multiorbital approach is needed, considerably increasing
the effort of computational studies. In fact, the analysis
of “multiorbital Hubbard models” in general defines a
new “grand challenge” for theoretical and computational
many-body studies.

There are indications that the five 3d orbitals of the Fe
should be included in a realistic model, but the practical
need for unbiased tools, such as numerical calculations,
must also be considered. For this reason, in this review
several models for the pnictides, ranging from the sim-
plest that includes only two orbitals, to a more elaborate
one with three, and to the most sophisticated five-orbital
cases will be presented. The rationale of the approach
discussed here can be summarized as follows: (i) Perform
a Lanczos study of the two-orbital model in a small clus-
ter studying exactly the properties of the ground state.
(ii) Use the results obtained numerically in the previ-
ous step to guide the use of mean-field approximations.
(iii) Compare the mean-field results with the numerical
results for the two-orbital model and tune parameters
and details. (iv) Apply similar mean-field approxima-
tions to models with three, four, and five orbitals, that
cannot be studied with Lanczos methods, and under-
stand how the different properties depend on the number
of orbitals. Of course, at every step a comparison with
available experimental literature provides additional cru-
cial information on the validity of the approach.

The organization of this brief review is simple. The
two-orbital Hubbard model is reviewed first, followed by
the three-orbital model, and in each case many results
are discussed. Then, a variety of other interesting re-
sults are presented including charge stripe tendencies,
relevance of nesting effects, magnetic order in the pres-
ence of Fe vacancies, anisotropies observed in the optical
conductivity, and several others. Emphasis is on open
problems and also plans for future calculations are dis-
cussed.

2 Two-orbital model

This “mini-review” of the research of our group will
start with the case of the two-orbital Hubbard model.
Other groups originally also presented such simple mod-
els, which are based on the Fe d,, and d,. orbitals [56].
And also several other groups have addressed the physics
of this model for the new superconductors, using a vari-
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ety of many-body approximations [57-67]. Detailed clas-
sifications of the possible superconducting order param-
eters for the two-orbital model have also been presented
[68, 69]. However, as explained in the Introduction, the
focus here will be the results presented by our group in
this context.

2.1 Hopping terms

Based on a detailed analysis of the many possible “hop-
ping” channels for electrons when only the two orbitals
d,. and d,. are involved in the process, investigations
based on the Slater—Koster approximation led to the con-
struction of a tight-binding model Hamiltonian for this
case [70]. The As atoms are merely considered as bridges
between the Fe atoms. Thus, for the two-dimensional
square lattice of irons, this “kinetic energy” portion of
the Hamiltonian is given by

HTB =—t Z(d;x,odi‘i‘l}@#f + di’y’gdi-‘,—i,y,a + hC)

1,0
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where the operator di oo Creates an electron at site ¢
of the square lattice, at the orbital «, and with spin
projection o. The notation x and y is used for the two
orbitals, instead of d. and d,,. Some details are im-
portant to remark. For instance, note that the hopping
is not only between nearest-neighbor (NN) atoms, but
also along the plaquette diagonals, namely to next-NN
(NNN) Here note that the notation in Eq. (1) is such
that, for example, & denotes a unit vector along the x
direction linking one site with its nearest neighbor, and
a similar notation for the other direction. The reader
should consult the original Ref. [70] to better compre-
hend the quite complex hopping structure of the model
that involves not only NN and NNN terms but in addi-
tion hoppings that link both the same as well as different
orbitals.

The presence of NN and NNN terms is easy to under-
stand based on the fact that As, P, or Se, are located
in the middle of the plaquettes (actually slightly above
or below the Fe plane, alternatively), contrary to the
oxygens in cuprates that are in the middle of the Cu-
Cu link. This simple geometrical factor related with the
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crystal structure immediately brings the issue of “spin
frustration” into the table. For instance, in the strong
coupling limit of large Hubbard U (with the explicit form
of this interaction to be defined below in the three-orbital
model section), NN hoppings would generate only NN
spin Heisenberg terms, but the NNN contributions will
generate frustrating NNN spin interactions. This is im-
portant, since it is for this basic reason, namely the com-
parable importance of the NN and NNN hopping terms,
that the wavevector of relevance in the magnetic state of
the pnictides is (7, 0) instead of (7, 7) as in the cuprates.
It is well known that a Heisenberg interaction with NN
and NNN terms displays a ground state with wavevector
(m,0) (degenerate with (0,7)) when the NNN coupling
is comparable or larger than the NN coupling [71]. Note
that this rationale is based on a spin model that can
be defined in the strong U coupling limit, while in weak
coupling the notion of “nesting” (to be addressed briefly
later) provides an alternative simple explanation.

With regards to the specific values of the hopping
amplitudes, in our early efforts they were derived from
the Slater-Koster formalism that establishes a relation
between the hoppings and some particular overlaps of
atomic wave functions [70]. But another simpler ap-
proach, widely used, is to simply fit the values of the
many hopping amplitudes by means of a comparison with
angle-resolved photoemission experiments or band struc-
ture calculations.

For the case of the Slater—Koster approach, and using
generic values for the wave function overlaps and some
energy gaps that appear in the SK formalism, the band
structure and Fermi surface of the model are shown in
Fig. 1. Considering how crude this approach is, the fact
that the final result contains hole pockets at the I" point
and electron pockets at the X and Y points, as the
pnictides do, is remarkable. Again, it is the geometry of
the problem, i.e., of the crystal structure, that rapidly
locates us into a multi Fermi surface “environment” for
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Fig. 1 (a) Energy vs. momentum for the non-interacting tight-
binding two-orbital Hamiltonian in Eq. (1) using ¢t;1 = 0.058
eV, to = 0.22 eV, t3 = —0.21 eV, and t4 = —0.08 eV. These
hopping amplitudes are obtained from the Slater-Koster formu-
las as described in Ref. [70]. Results are plotted along the path
(0,0) — (7,0) — (m,m) — (0,0). (b) Fermi surface for the half-filled
system. Reproduced from Ref. [70], Copyright © 2009 American
Physical Society.
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the pnictides, without the need of carrying out LDA cal-
culations. However, note that the FS of this model in
the SK approximation is only qualitatively correct, since
the size of the pockets is too large when compared with
other more numerically realistic (and complicated) ap-
proaches.

Other authors have used the philosophy of simply fit-
ting hopping amplitudes against band structure or pho-
toemission results, as already explained. Results from
Ref. [56] are in Fig. 2. In this case note that the Fermi
surface is qualitatively similar to that of Fig. 1 but the
size of the pockets are smaller. Also note that the over-
all bandwidths are quite different between the two sets of
hoppings, but since most of the physics arises from states
near the Fermi level, at least at weak and intermediate
couplings, this discrepancy is not important. Also note
that at energies of more than 1 eV corrections from other
Fe orbitals and other atoms are of much relevance, thus
comparing actual bandwidths is not crucial.
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Fig. 2 (a) Energy vs. momentum for the non-interacting two-
orbital tight-binding Hamiltonian described in this section using
the hopping amplitudes obtained from fits of band-structure cal-
culations [56]. The actual hoppings are t1 = —1.0, to = 1.3, and
t3 = t4 = —0.85 (all in eV units). Results are plotted along the
path (0,0) — (7, 0) — (7, 7) — (0,0). (b) Fermi surface for the half-
filled system. Reproduced from Ref. [70], Copyright (© 2009 Amer-
ican Physical Society.

2.2  Results for the two-orbital model

As discussed before, the importance of the NNN hop-
pings in the tight-binding portion of the Hamiltonian is
a clear indicator that the magnetic state of the undoped
limit (which for two orbitals means two electrons per Fe)
may have magnetic tendencies that are not like those
of Cu oxides. In fact, after adding the Hubbard interac-
tions (that will be provided explicitly below for the case
of three orbitals) calculations using the Lanczos method
(shown in Fig. 3) clearly indicate that the spin structure
factor presents a peak at wavevectors (m,0) and (0, ), as
opposed to (m, 7). Notice that the wavevectors that are
dominant in the two orbital model are those of relevance
in the case of the real pnictide compounds, according to
neutron scattering results [72]. It is interesting that even
the simplest of the multiorbital models for the pnictides,
namely using just two orbitals as opposed to five, already
provides the correct wavevector for the magnetic order.
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Fig. 3 Spin structure factor S(k) obtained for the case of hop-
ping parameters t1 = —1.0, to = 1.3, t3 = t4 = —0.85 (in eV

units) [56], using the two-orbital Hubbard model. (a) are results
for several values of the Hubbard on-site repulsion U and the Hund
coupling (in units of eV) J/U = 1/8; (b) results for two values of
J, with U = 2.8 eV fixed. (a) and (b) were obtained at half filling
using the Lanczos method (i.e., these are exact results) on V8x /8
clusters. Reproduced from Ref. [70], Copyright © 2009 American
Physical Society.

The analysis of the two-orbital Hubbard model also
included the calculation of the one-particle spectral func-
tion [73], which is shown in Fig. 4. The technique used
to carry out this calculation is the Hartree mean-field
approximation. The results suggest that there are two
critical values of the Hubbard U coupling where qual-
itative changes occur. At large U, panel (c), it is clear
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Fig. 4 Two-orbital model mean-field spectral function along high
symmetry directions in the extended First Brillouin Zone, using the
model with SK hoppings [67]. The different panels correspond to
different values of U: (a) U = 0.5, (b) U = 0.8, (c) U = 2.0 (all in
eV units). The Hund coupling is fixed to J = U/4 and the magnetic
order wavevector is (m,0). Reproduced from Ref. [73], Copyright
(© 2009 American Physical Society.
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that there is a large gap, indicating an insulating state.
This is reasonable in the large U limit. At small U, panel
(a), the Fermi surface is the same as at U = 0 since the
mean-field order parameter is found to be zero in a finite
range of small U. The most interesting result is shown in
the intermediate panel (b), which corresponds to inter-
mediate U. In this case, some of the bands that crossed
the Fermi level in the non interacting limit now develop
a gap, while others not. So this corresponds to a partial
gap opening of the Fermi surface. Since, as will be shown
explicitly for more orbitals, in this regime the magnetic
order parameter is nonzero, then this intermediate range
of U contains a state that is simultaneously magnetic and
metallic, as in pnictide experiments [70, 73].

Associated with the results described before for
the one-particle spectral function are the momentum-
integrated density of states (DOS), shown in Fig. 5. The
actual calculation of these DOS’s was carried out using
the VCA technique (Variational Cluster Approx.). For
details the reader should consult Ref. [73] and references
therein. The important point is that the DOS shows the
presence of three regimes: no gap at U = 0, “pseudo-
gap” at intermediate U, and a large full gap at large U,
in agreement with the one-particle spectral function of
the previous figure.

e U=00
, — U=05
! H---v=08
— [
: i
! -
|
-3

(Zhayd
Fig. 5 VCA calculated density-of-states for different values of
U in the metallic regime (with both good metal and pseudogap
behaviors, for the nonmagnetic and magnetic cases, respectively)
and insulating regimes of the two-orbital Hubbard model, using
the SK hopping parameters and J = U/4. Reproduced from Ref.
[73], Copyright (© 2009 American Physical Society.

Overall, the study of the two-orbital Hubbard model
using a combination of Lanczos and mean-field tech-
niques provided results that were in surprising qualita-
tive agreement with experiments for pnictides: the cor-
rect experimental Fermi surface at high temperature can
be obtained by tuning the hopping amplitudes, the cor-
rect wavevector for magnetic order spontaneously ap-
pears in the Lanczos method, and the presence of a
“bad metal” at intermediate couplings is suggested by
the pseudogap nature of the DOS at those couplings.

Before turning to the three-orbital model, note that it
is difficult to carry out calculations at finite temperature
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with the mean-field approximation, particularly in the
regime near the critical temperature for antiferromag-
netism. Moreover, above the critical temperature in this
formalism there are no remnants of any form of mag-
netism, not even local moments. However, as will be
discussed in the section related with “nesting”,
experiments strongly suggest the presence of local mo-
ments above the ordering temperature, showing that the
pnictides are likely in an intermediate coupling regime
where weak coupling procedures are qualitative at best.

recent

3 Three-orbital model

While the two-orbital model described before has several
properties that are in good agreement with experiments,
it is known that the Fermi surface of the pnictides has a
dzy component at the electron pockets. For this reason
it is important to propose a tight-binding model with
three orbitals (xz, yz, and zy), and with a Fermi surface
that is in agreement with photoemission and band cal-
culations, not only with regards to its shape but also its
orbital composition.

3.1 Real space

A three-orbital Hubbard model for the pnictides has been
proposed in Ref. [74]. Following the Slater—Koster pro-
cedure described in Ref. [70], the mathematical form of
this tight-binding model can be established, and then
the hopping amplitudes are obtained by fitting results
for the Fermi surface against photoemission experiments.
The explicit form for this model is given below. NN and
diagonal NNN hoppings were considered for all the or-
bitals. It is clear that the hopping terms for the zz and
yz orbitals are the same as in the previously discussed
two-orbital model and they are here repeated for com-
pleteness:

H™Y = —, Z 4,52 Ud,Ler 2z, U"‘dz vz, 0d1+$ Yz, 0—|—h_c_)
i,0
t T
—to Z(di,xz,odi+§:,a:z,o + di’yz’gdi+:&’yz’o + hc)
1,0
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A
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With regards to the new intra-orbital hoppings for the
zy orbital, these hopping terms are given by
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where Ay, is the energy difference between the zy and

the degenerate xz/yz orbitals. Finally, the hybridization
terms between the xz/yz and the xy orbitals are the

following:
= —t; Z | [ gt

2,Yz 0y
H 1, rz,0 1+, TY,o

+ h.c.

~tr Z[( D] gy im0 + ]

—t7 i[( DML gy o + o]
io

—tr Y [(=D)df , odyg .+ el
io

—ts Z[( )‘ ld;r ez0lititgeyo T h.c.]
io

+ts Z[( )‘ ldi z’q,o’d1+x+y,wz ot h.c.]

‘tg.i[( D] o irsm gy + B

+ts 2[( DML o g an o + ReC]

—ts 2[( )‘ ldI wzoitivgayo T h.c.]
io

s > (DM, diisigyeo T+ hoc]
io

+ts (D] s gy o+ e
io

—tg Z[( Dildl  dia gt hec]

(4)
(,

The operator dzag i.0.0) creates (annihilates) an
electron at site ¢, orbital a = zz,yz, xy, and with spin
projection 0. n; o = N a,1 +Ni,a,| are the corresponding
density operators. As discussed before, the entire set of
hopping parameters ¢; in Egs. (2)—(4) will be determined
by fitting the band dispersion of the model to band struc-
ture calculation or photoemission results. The chemical
potential p is set to a two-thirds filling, which corre-
sponds to four electrons per Fe site. At this electronic
density, the Fermi surface is in agreement with experi-
ments. Previously proposed three-orbital models [50, 75]
only contained the NN hybridization ¢7, but since NNN
terms are included for the intra-orbital component, as
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well as for the hybridization between zz and yz, they
should also be included in the hybridization with xy. It
can be shown that these NNN terms with hopping tg turn
out to be very important to provide the proper orbital
character for the electron pockets when compared with
LDA results. Finally note that the hybridization Eq. (4)
contains factors (—1)!!l that arise from the two-iron unit
cell of the original FeAs planes. The explicit values for
the hoppings are provided in Table 1, reproduced from
[74].

Table 1 Parameters for the tight-binding portion of the three-
orbital model. The overall energy unit is electron volts. For more
details see Ref. [74], where additional information for a better vi-
sualization of the hoppings is provided.

t1 to t3 t4 ts  tg t7 ts Agy
0.02 0.06 0.03 -0.01 02 03 =02 —t7/2 0.4

The hopping term in the Hamiltonian can be trans-
formed to momentum space and diagonalized. Explicit
expressions can be found in Ref. [74]. The results for
the band structure (see Fig. 6) show that the hopping
amplitudes mentioned above provide a Fermi surface in
qualitative agreement with experiments. Moreover, the
orbital composition is also in agreement with band struc-
ture calculations, that includes the dominance of the zy
component in small portions of the electron-pocket Fermi

surfaces.
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Fig. 6 (a) Band structure and Fermi surface of the tight-binding
(i.e., non-interacting) three-orbital model, with parameters from
Table 1 and in the unfolded BZ. The diagonal thin solid line in (b)
indicates the boundary of the folded BZ. In panels (c)—(e), the
orbital compositions of the two hole and one of the electron pock-
ets are given. The winding angle 6 is measured with respect to the
ky-axis. The second electron pocket is analogous to the one shown
simply replacing zz by yz. In all panels, the dashed lines refer to
the zz orbital, the solid to yz, and the dotted to zy. Reproduced
from Ref. [74], Copyright © 2010 American Physical Society.
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3.2 Coulombic interactions

The Coulombic interacting portion of the three-orbital
Hamiltonian is given by

Hi = UZni,a,Tni,a’l + (U/ — J/2) Z Ng,aMNi,3

i, t,a<f
—2J Y Sia-Sip
i<
I D0 ol g dig g+ hec) (5)
i<

where «, § = 1,2, 3 denote the orbitals, S; o (n;,«) is the
spin (electronic density) of orbital « at site ¢ (this index
labels sites of the square lattice defined by the irons),
and the relation U’ = U — 2.J between the Kanamori pa-
rameters has been used (for a discussion in the context
of manganites see Ref. [76]). The first two terms give
the energy cost of having two electrons located in the
same orbital or in different orbitals, both at the same
site, respectively. The second line contains the Hund’s
rule coupling that favors the ferromagnetic (FM) align-
ment of the spins in different orbitals at the same lattice
site (note that the Hund coupling will be denoted by J
or by Jy in this review, because both notations are of-
ten used). The “pair-hopping” term is in the third line
and its coupling is equal to J by symmetry. Although
it was not provided explicitly, the Hubbard interaction
for the case of other number of orbitals (such as two,
discussed before) is the immediate generalization of the
case of three orbitals shown here.

Note that the values used for U and J can be sub-
stantially smaller than the atomic ones, because the in-
teractions may be screened by bands not included in the
Hamiltonian. This comment is also valid for the values of
physical relevance when models with different number of
orbitals are considered. The Coulombic interaction terms
introduced above have been used and discussed in sev-
eral previous publications [67, 70, 73, 74, 77] where more
details can be found by the readers. All energies are pro-
vided here in electron volts, unless otherwise stated. As
already expressed, and as shown in Ref. [74], the elec-
tronic density of relevance for the three-orbital Hubbard
model is n = 4 per site (i.e., 4 electrons spread into the
3 orbitals of each site) to reproduce the expected Fermi
surface in the paramagnetic regime.

3.3 Mean-field approximation

To study the ground state properties of the models in-
troduced before, a mean-field approximation can be ap-
plied. This approximation was discussed in publications
for two orbitals [73, 77] that the reader can consult for
more details. The simple standard assumption of consid-
ering only the mean-field values for the diagonal opera-



386

tors follows [78]:

%cos(q-ri)m# 0450005 (6)

where q is the ordering wavevector of the magnetic order.

<d1,u,o’djvl’70'/> = | +

n,, and m,, are mean-field parameters (to be determined
self-consistently) describing the charge density and mag-
netization of the orbital u, respectively. The rest of the
notation is standard. Applying Eq. (6) to the Hubbard
portion of the Hamiltonian, the full mean-field Hamilto-
nian in momentum space can be written as

Hyp = Hrp + 0+ ) eud ok gio
k,p,o

+ Z nu,o(d;rc,p,akorq,u,U + d;rc-;-q,#,gdk,u,a)

k,p,o
(7)

where k runs over the extended first BZ, Hrg is the
hopping term in momentum space, the constant C' is

C-—NUZ( ——m)— NQU' - anmy
nAv
—Zmuml,

nAv

N is the number of sites, and the following definitions
were introduced

e =Unu+ QU —J)> n, (8)
vEu
g
s = =5 (Umat 75 m, ) )
vEp

The mean-field Hamiltonian can be numerically solved
for a fixed set of mean-field parameters using standard
library subroutines to diagonalize the fermionic sector.
n, and m, are obtained self-consistently by minimiz-
ing the energy via an iterative process. During the iter-
ations > o = n was enforced at each step, such that
the total charge density per site is a constant (4 for the
three-orbital model, 6 for the five-orbital model, and 2
for the two-orbital model). Note also that the numerical
solution of the mean-field Hamiltonian immediately al-
lows for the calculation of the band structure, density of
states (DOS), and magnetization (m = - m,) at the
ordering wavevector g, and many other quantities.

3.4 Results for the three-orbital model

The complete three-orbital model (hopping and Coulom-
bic terms) cannot be studied in the same eight-sites clus-
ter where the two-orbital model was exactly solved using
the Lanczos method. Thus, mean-field approximations
must be used from the start to obtain some informa-
tion about this model. Some results are shown in Fig.
7, working at electronic density of four electrons per Fe
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site, and varying the couplings U and J/U. From this
figure, it is clear that there are many competing states.
At small U, there is no magnetic order and the state
is paramagnetic. With increasing U, a variety of mag-
netic orders develop including a region dominated by a
“realistic” region with (7, 0) wavevector, that happened
to be orbitally disordered. With further increasing U, a
variety of insulating states are observed with different
wavevectors for magnetism and with different arrange-
ments for orbital order. Overall, qualitative features of
the two-orbital model survive in the sense of having ba-
sically three regimes of small, intermediate, and large
U couplings (with transport characteristics being metal,
poor metal, and insulator, respectively). However, the
presence of a third orbital induces a richer variety of
combinations for the spin and orbital degrees of freedom.

0.35

0.3+
0.25 4
> 0.2
~N
™ 0.15
0.1+

Fig. 7 Qualitative phase diagram of the three-orbital Hubbard
model in the mean-field approximation, varying the J/U and U
couplings. The shaded area denotes the stability region of the real-
istic (,0) magnetic ordering. The lines are guides to the eye, the
dot-dashed line approximately indicates the metal-insulator tran-
sition. The data points were obtained by comparing the energies
of the various phases within the mean-field approximation. The
meaning of the symbols is the following: +: (m,0)-AF state with-
out pronounced orbital order (orbital disorder, OD); x: (7, 0)-AF
state with (m, 7) alternating orbital (AO) order with ¢ = 0; empty
squares: (m,0)-AF state with (0, 7) orbital stripes (SO) (¢ = 0);
x: (m,0)-AF state with ferro-orbital (FO) order (¢ = 0); filled
squares: FM with FO ordering tendencies, ¢ = w/4. This FO or-
der is weaker for small U and larger J ~ 0.2. The filled circles de-
note parameters that do not support magnetically ordered states.
For small J, some FO order with ¢ = n/4 is found, similar to
the FM phase. The empty circles at large U and small J denote
similar states without magnetic ordering, but with extreme orbital
order, where the zy orbital is (almost) empty, while zz and yz
are (almost) filled. Reproduced from Ref. [74], Copyright © 2010
American Physical Society.

Another interesting issue in the context of multiorbital
models is the possibility of orbital order. The phase dia-
gram of the three-orbital model shows that indeed orbital
order can happen, although that usually occurs at large
U where the system is an insulator. But what is the sit-
uation at intermediate couplings in the realistic region
for pnictides that is simultaneously magnetic and metal-
lic? Figure 8(a) shows the contribution of each orbital
to the magnetization of the (7, 0) state. At large U it is
clearly different for the three orbitals, indicating orbital
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order. However, at intermediate U there are still some
small differences between zz and yz. The same with re-
gards to the orbital occupation in panel (b), although
with an even smaller difference between zz and yz at
intermediate couplings. For more details see Ref. [74].
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Fig. 8 (a) Orbital magnetization and (b) orbital occupation
number as a function of the on-site Hubbard repulsion strength
U, obtained with a mean-field approximation applied to the three-
orbital Hubbard model. The colors indicate the different phases
that with increasing U are: uncorrelated metal, itinerant (7, 0) an-
tiferromagnet without orbital order, itinerant (,0) antiferromag-
net with alternating orbital order, and a ferro-orbitally-ordered
(m,0) antiferromagnetic insulator. Hopping parameters are from
Table 1, and J = U/4. Reproduced from Ref. [74], Copyright ©
2010 American Physical Society.

Why is that at intermediate couplings there are visible
differences between the contributions to the magnetiza-
tion of the zz and yz orbitals even if the state is not
orbitally ordered? The reason is that at low tempera-
tures the magnetic state (m,0) breaks rotational invari-
ance, thus breaking explicitly the symmetry between the
two orbitals. But once a full integration over energy is
carried out to produce the total occupation of each or-
bital, the differences seen at the Fermi surface become
much smaller [79]. This can be visualized in Fig. 9 where
the DOS is shown for the xz and yz orbitals. Clearly the
DOS of the yz orbital presents a drastic reduction (pseu-
dogap) at the Fermi level due to the opening of gaps at
the original Fermi surface, mainly due to nesting effects.
Thus, at intermediate couplings there is a weaker form
of orbital order that occurs at the Fermi surface, but
that is not true orbital order in the long-range sense.
This important conceptual topic is of relevance in the
interpretation of experiments that only focus on Fermi
surface physics.

Figure 10 contains information about the magnetic
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Fig. 9 Density of states of the xz and yz orbitals in the (7, 0)-AF
phase of the three-orbital model at U = 0.7 and J = U/4, studied
with the mean-field approximation. For these values of U and J, the
orbital densities are Nz = ng. 1 + Ng2, | = 1.590 = ny, = 1.586,
and the magnetizations mgzs = Ny, 1 — Nz, = 0.04 K My, =
0.15. For U = 0, the DOS N(w) is identical for both orbitals (solid
line). A Gaussian broadening with o = 0.005 was used. The inset
illustrates the (, 0)-AF order considered here and the zz, yz, and
zy orbitals (left to right). Reproduced from Ref. [79], Copyright
(© 2010 American Physical Society.

order for wavevector (m,0) vs. U, parametric with J/U.
At small J/U, including zero, there is a discontinuity
at a value of U different from that where the magneti-
zation develops. Thus, as expected from the one-particle
spectral-function analysis of the two-orbital model, there
is an intermediate coupling regime, between two critical
values of U, where the dominant state is simultaneously

magnetic and metallic (the latter property arising from
the DOS).
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Fig. 10 Mean-field order parameter at wavevector (m,0) vs. U
(in eV units) for the three-orbital Hubbard model, and paramet-
ric with the values of J/U indicated. Reproduced from Ref. [80],
Copyright © 2010 American Physical Society.

For the case of the three-orbital Hubbard model the
band structure and Fermi surface has been calculated
within the mean-field approximation and the results are
reproduced in Figs. 11 and 12. As U grows, it is clear
that “satellite” structures develop at the Fermi surface,
in agreement with angle-resolved photoemission experi-
ments (for a detailed list of references see Ref. [80]) in
the low-temperature magnetic state. More detail about
the satellite peaks, and their hole vs. electron character,
can be seen in Fig. 12.

The comparison between mean-field approxima-
tion results and neutron scattering and photoemission
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Fig. 12 Unfolded band structure mean-field results for the three-
orbital Hubbard model and cases (a) U = 0, as reference;
(b) J/U =0.33, U = 0.6, m = 0.2; and (c) J/U = 0.25, U = 1.05,
m = 0.6. Panels (b) and (c) show a V-shaped pocket in between
the (0,0) and (7, 0) points. The scale used (arbitrary units) is on
the right of the panels. Reproduced from Ref. [80], Copyright ©
2010 American Physical Society.

experiments, supplemented by the constraint that the
parent compounds of pnictides are metallic, imposes se-
vere constraints on the values of coupling constants of
relevance for the pnictides. The results are in Fig. 13.
The range of J/U is centered at 1/4 and the value of U
is centered at 1 eV for the three-orbital model.
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Fig. 13 Phase diagram for the three-orbital Hubbard model ob-
tained with the mean-field approximation. The “physical region”
shown in yellow is the regime of couplings found to be compatible
with neutron and photoemission experiments. The “non-magnetic”
region corresponds to a regime where the state has a zero order pa-
rameter. In the “insulator” region, there is no Fermi surface and
the state is insulating. The “discontinuity” label corresponds to
the discontinuous jump in the order parameter shown in Fig. 10.
The entire “magnetic metallic” regime could in principle have been
compatible with experiments, but only in the yellow highlighted re-
gion is that m is sufficiently small-intermediate in value to match
neutrons and the Fermi surface has satellite pockets near the I'-
point hole pockets to match photoemission results. Reproduced
from Ref. [80], Copyright © 2010 American Physical Society.

Summarizing both the results of this Section and the
previous one, we can see clearly that the two- and three-
orbital Hubbard models provide a reasonable starting
point to the physics of the pnictides, since a range of
couplings can be found that matches several experimen-
tal results for these materials. The rest of this manuscript
will now be devoted to a variety of topics that are concep-
tually interesting and where several open issues remain
to be answered.

4 Are there charge stripes in models for
pnictides?

In the area of the high critical temperature superconduc-
tors based on Cu, there is an active subfield of research
that relies on the possible existence of charge stripes,
which is a charge inhomogeneous state reached by hole
doping the insulator parent compound. These stripes are
basically made of parallel lines of holes, aligned either in
one direction or another of the Cu-oxide layers, with the
undoped antiferromagnetic state in between [81]. Can a
similar phenomenon occur in pnictides? At first sight
this seems unlikely because one of the main reasons for
the stripes in cuprates is the robust antiferromagnetic or-
der in the undoped limit: when charge is added (holes) to
this background, each individual hole distorts the mag-
netic state in its vicinity and to reduce this “damage”
the holes must be arranged together. Coulomb repulsion
prevents a large cluster of holes, thus the optimal situa-
tion is the charge stripes. But the pnictides are located
at intermediate Hubbard U couplings, so the situation



Elbio Dagotto, et al., Front. Phys., 2011, 6(4)

in that context is less clear.

Early calculations in cuprates that predicted the ex-
istence of stripes relied on mean-field approximations
(Hartree—Fock) [82—85]. Thus, it is natural to apply ex-
actly the same technique but now to the two-orbital Hub-
bard model. Moreover, there are some experimental in-
dications of nematic behavior in pnictides [86, 87], thus
the search for possible reasons for these anisotropies are
important. The calculation for stripes in pnictides was
carried out by members of our group and the results were
reported in Ref. [88], and some results are reproduced in
this section. In Fig. 14, results using the Hartree-Fock
approximation in real space, namely allowing each of the
expectation values in the HF Hamiltonian to vary inde-
pendently from site to site, are shown. These results are
reached via an iterative process starting typically with
random numbers for the many expectation values to pre-
vent biasing the results toward a particular solution.

Figure 14 shows the presence of charge stripe states
in the two-orbital Hubbard model for pnictides, when
the system is doped with extra electrons. Note the clear
presence of two lines of charge where the extra electrons
accumulate. Note also in the other panel that the spin or-
der is such that the spin stripes, as opposed to the charge
stripes, are oriented along the other direction. Moreover,
at the location of the charge stripes interesting domain

walls are formed. For more details see Ref. [88].
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Fig. 14 (a) Example of charge-striped state found in the HF
approximation to the two-orbital model, using the hoppings of
Refs. [67, 70], overall electronic density (n) = 2.33, U = 0.8,
Ju/U = 0.25, and a 16 x 16 cluster. The size of the circles is
linearly related to the charge, with the largest circles denoting
Nmax = 2.42 and the smallest nyi, = 2.27. Full (open) circles are
used when the local density is larger (smaller) than the average.
(b) Mean value of the spin in the state shown in (a). Note the
presence of domain walls at the location of the charge stripes, in-
serted in a mainly (0, 7) background. For more details the readers
should consult Ref. [88] from where this figure is reproduced.

Figure 15(a) provides another example of the charge
stripes found in HF investigations for the two-orbital
Hubbard model. Panel (b) shows that the effect occurs
for hole doping, similarly as in the previously shown re-
sults for electron doping. Panel (d) illustrates the density
vs. chemical potential curves and the associated size ef-
fects which in this case appear to be small. Panel (c) is
perhaps the most important since among many quanti-
ties it contains the “An” which is the difference between
the charge value inside and outside the stripes. The fact
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that this number is different from zero even in a region
where the gap is zero in the undoped limit suggests that
stripes may even exist when the extra carriers are added
to the intermediate coupling metallic-magnetic state be-
lieved to be of relevance for pnictides. This is a concep-
tually novel state not described before in the cuprates
since in that context it was the Mott insulator that was
being doped.
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Fig. 15 (a) HF charge-striped state using the hopping ampli-
tudes of Refs. [67, 70], at (n) = 2.45, U = 0.8, and Jy/U =
0.25. The size of the circles is proportional to the charge, with
Nmax = 2.48 and nyin = 2.41. (b) Same as (a) but for (n) = 1.83,
U = 1.0, with nmax = 1.84 and npin, = 1.81. (¢) (m,0) antifer-
romagnetic order parameter m, charge gap A (from (n) vs. p),
and An = Nmax — NMmin at (n) ~ 2.3, as a function of U. U is
the critical U where magnetism starts while Ucg is the critical U
where a gap develops in the density of states. (d) (n) vs. p at
U = 1.0, Jy/U = 0.25, and various lattice sizes, suggesting that
size effects are small in this quantity. Results at others U’s appear
equally well converged. Reproduced from Ref. [88], Copyright ©
2011 American Physical Society.

In spite of the potential important relevance of these
results, it is fair to remark that still much more work is
needed to confirm the existence of charge stripe states
in Hubbard models for pnictides. Among several poten-
tially important improvements, HF calculations with ad-
ditional orbitals should be carried out to confirm the
presence of these stripes beyond the two-orbital model.
The reader is encouraged to consult the original refer-
ence [88] for more details and also for citations about
experimental work that reported spin incommensurate
order in real pnictides: this type of spin order is very
natural in charge stripe states and it may provide an ev-
idence for stripe formation (but Fermi surface effects can
also lead to spin incommensurate order without charge
stripes). As explained before, also there have been re-
ports of nematic order in pnictides (see Refs. [86, 87])
that are compatible with charge stripes. However, it is
still too early to claim that indeed charge stripes do exist
in doped pnictides. Also it is too early to address even
more subtle issues such as whether these charge stripes
compete with superconductivity or instead they facili-
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tate the stabilization of such a state. Clearly, much more
work is needed to fully understand these difficult issues.

5 Competition of pairing tendencies in the
two-orbital Hubbard model

The issue of the existence of pairing tendencies in Hub-
bard models has been controversial since the early days
of research in cuprates, over 20 years ago [9]. While there
are solid arguments that suggest pairing in purely elec-
tronic Hubbard models, the evidence of this pairing is not
conclusive in square lattices, although it is convincing in
two-leg ladder systems [89]. Different is the situation if
variations of the Hubbard model are used such as the fa-
mous t—J model [9]. In this case the Heisenberg coupling
J is considered a free parameter, as opposed to being
J = 4t%/U as in the strong coupling limit of the Hub-
bard model (¢ is the hopping of the one-band Hubbard
model), and, thus, the tendencies towards a robust mag-
netic order can be enhanced by increasing J. In the t—J
model several calculations have shown that pairing in the
famous d-wave channel of cuprates is indeed present in
the model, both in two-leg ladders and in square lattices
[9, 89].

What is the situation in the area of the Fe-based su-
perconductors? Here the problem is “worse” since the
multiorbital nature of the problem makes the calcula-
tions much more difficult. To make progress in this area
recently a Lanczos calculation was setup, namely an ex-
act solution of the Hubbard model for two orbitals was
found, for a small cluster of just eight sites [90]. This tiny
system still has millions of states in the Hilbert space,
thus justifying the severe size limitation in the calcula-
tion. How can pairing be studied in this small cluster? As
discussed above, a trick to increase the pairing tendencies
is to use a t—J model but such a model is not known yet
in the area of pnictides (our group and collaborators did
calculate the analytic form of this model but it is very
cumbersome and such model has not been fully analyzed
yet). Thus, a simpler route is to merely add a Heisenberg
interaction term to the Hubbard model, still allowing for
doubly occupied orbitals to appear in the Hilbert space
but with a J coupling (actually in practice both NN and
NNN couplings, denoted by Jyn and Jynn, respectively)
that can be increased to make the magnetic tendencies
more robust (note also that the notation “J” is used for
the Hund coupling of the multiorbital Hubbard model as
well, so the reader should be cautious in deducing from
the context if “J” denotes a Heisenberg NN coupling or
an on-site Hund coupling). By this procedure, namely
increasing Jyn and JynnN, the binding of two extra elec-
trons added to the “undoped” parent compound limit
can be studied [90]. Of main interest in this calculation
is what is the pairing channel (i.e., s, d, p) of relevance in
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these systems. While plenty of calculations in pnictides
have been already carried out analyzing the properties of
isolated pairing channels, only unbiased calculations such
as the one sketched here, limited as it is, can truly ad-
dress their competition. For the case of cuprates a similar
small cluster calculation gave clear evidence that d-wave
was the only channel of relevance in cuprates [9]. What
is the situation for pnictides? After all, there are many
conflicting reports of nodal vs. nodeless superconductiv-
ity in these compounds.

Some of the results of this difficult calculation, that in-
volved the diagonalization of the eight-site cluster thou-
sands of times [90], are reproduced in Fig. 16. The left
panel illustrates tendencies when in the absence of the
extra Heisenberg couplings. The most important results
are in the right panel, where the different tendencies
for pairing are shown varying the Hubbard and Hund
couplings. The three colors denote three different chan-
nels. At large Hund coupling there are tendencies to-
ward a spin triplet state, but experimentally this is un-
likely. Thus, the most interesting results are those in blue
and red. They show two competing tendencies: s wave
vs. d wave. Actually the two irreducible representations
of the Dy, point group involved in the process are Ay,
and Bag, respectively. A special case of the former is the
s* state that has been much discussed in pnictides, al-
though in most of the blue region the superconducting
gap has some wavevector dependent structure, namely it
is more generic than the plain s*. With regards to Bag,
this seems to be a competing channel that was observed
already in some of our previous publications with regards
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Fig. 16 Study of the pairing tendencies of the two-orbital Hub-
bard model on small clusters (eight sites) studied exactly via the
Lanczos algorithm. Shown is the relative symmetry between the
N = 16 (undoped) and N = 18 ground states, varying U and Jyg /U
(with N the number of electrons). Circles denote triplet states,
squares Bag-symmetric singlets, and diamonds Ajg-symmetric sin-
glets. (a) Results for the special case where the extra couplings
that render the system a “t-U-J” model, with stronger magnetic
tendencies, vanish i.e., JNn = Jnnn = 0 for comparison. Open
triangles indicate binding but this occurs only in small regions of
parameter space. (b) Results now with nonzero Jyn and JNNN-
Shown are the different pairing channels, each for the lowest value
of (JnN, JNNN) where binding appears. Results reproduced from
Ref. [90] where more details about the notation and calculations
can be found.
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to the actual quantum numbers of the state of two extra
electrons for the two-orbital Hubbard model [67]. How-
ever, only in the calculation shown in Fig. 16(b) is that
a true bound state is observed. The overall qualitative
conclusion of this effort is that contrary to the cuprates,
there seems to be more than one pairing tendency in the
two-orbital model for pnictides, and depending on the
actual couplings different specific members of the pnic-
tide family could be located in one case or the other.

However, note that much more work is needed to con-
firm these results. In particular, it is at present not clear
to what extent the presence of the d-wave competing
state is also a property of more realistic three- or five-
orbital models. This issue will be very difficult to clarify
in the future since the size of the Hilbert spaces are too
large to repeat the same calculation for the case of three
or more orbitals. Thus, for the time being it is impera-
tive that the possibility of pairing channels other than
s-wave be further considered in experimental studies of
pnictides. The reader interested in these topics should
consult Ref. [90] for more details and references about
this fascinating subject.

6 Are interorbital pairing tendencies possible
in two-band models?

As remarked in the investigations described in the previ-
ous section, there are competing tendencies for pairing,
at least within the two-orbital model. Within the spin
singlet sector, the competition between d and s arises
from the existence of the orbital degrees of freedom. For
the case of d-wave (Ba4) the operator that creates the
pair is interorbital, i.e., the two electrons of the Cooper
pair do not belong to the same orbital, but to different
ones. To address qualitatively the issue of interband pair-
ing in the pnictides, and to move beyond the traditional
Hubbard model into more phenomenological models, in
recent investigations the following two-bands simplified
model with interband pairing was considered [91]:

Hyy =3 ea(k)ch o othaotV D (Charclyg +hec)
a,o a3

(10)
where «a,(,= 1,2 label two bands that are not hy-
bridized, o is the spin projection, and for simplicity

— k2
- 2me,

€al(k) +C

(11)

which gives parabolic bands that are degenerate at k = 0
with energy C', and with a chemical potential g = 0. This
can be considered as a crude representation of the two
hole-pocket bands around the I" point in the pnictides,
but more importantly this model defines a simple toy
model where the effects of interband pairing can be stud-
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ied. In general, the parameter V' = V{A in the second
term, where pairing is favored by hand, can be consid-
ered as the product of an attractive potential V) between
electrons in the two different bands and a mean-field pa-
rameter A determined by minimizing the total energy.

In order to study at what values of the coupling the
interband pair is formed, let us assume that the, more
fundamental, interaction term responsible for the inter-
band attraction is given by

1
Hattr = N 27aVk,k/CL)Q’TCik’,a)lc—k’,—a,lck’,a,T
k.k'
(12)
where Vi = —Vp and N is the number of sites. Per-

forming the standard mean-field approximation: bg =
(C—k/ —a,|Ck 1) and bl = (c};’aﬁcikﬁad) and making
the substitution cL,a,TCT—k,—a,L = b;rc + (Cz,a,TCT—k,—a,L —
b};) (and an analogous substitution for the product of
annihilation operators), the mean-field results were ob-
tained. Defining A = & Y, b = & > p bL the following
mean-field Hamiltonian was reached:

Hyr = Z Ea(k)c]t-qa’gck,a,a
VoA > (ko ipy +he) +20AN
k.a7p
(13)

which is of the form shown before in Eq. (10). The
minimization of the mean-field Hamiltonian shows that
indeed superconductivity in the interband channel can
be stabilized but with the only requirement that the
pairing attraction cannot be simply infinitesimal, but a
finite threshold must be crossed in order to reach the
superconducting state (see Fig. 17). Thus, to the extent
that the pairing in pnictides is sufficiently robust, then
this phenomenological approach as well as the Lanczos
calculations suggest that interband pairing (i.e., pairing

Fig. 17 Mean-field energy [expectation value of Eq. (13)] per site
with interband pairing having strength V5/2 vs. V. = Vp A, for dif-
ferent values of Vp. After a critical coupling of the pair attraction is
reached, then superconductivity in the interband channel is stable.
For more details and notation the reader should consult Ref. [91].
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involving different orbitals) is actually possible in the Fe-
based superconductors. For more details see Ref. [91].

7 Is nesting truly important?

In the early days of pnictides, it was widely assumed that
nesting properties of the Fermi surface were important,
first to develop the (w,0) magnetic order and then for
the pairing tendencies. However, as investigations in this
area of research progressed, this perception has lost some
of its appeal. For instance, while 1111 materials with a
small magnetic order parameter (according to neutron
scattering results) could be located in the weak coupling
regime, the 122 materials with a larger order parameter
certainly need a larger U, although still in the interme-
diate U range of Hubbard couplings. The most recent
developments (see next section) suggest the existence of
parent compounds that are insulators, effectively increas-
ing the values of U that appear to be of relevance in pnic-
tides. In addition, recent experiments clearly show the
existence of local moments above the ordering critical
temperatures [92, 93]. This behavior is not expected in a
weak-coupling approach where the moments are formed
together with the development of long-range order. Then,
to what extend nesting based scenarios are still relevant?

To qualitatively study nesting effects, in our recent
publication [94] two models with virtually identical
Fermi surfaces (with hole and electron pockets) were
studied. The first model is actually the same two-orbital
model for pnictides widely studied before and described
already in this manuscript. For the purposes of the nest-
ing investigation this is called the d-model. The other
model was introduced in Ref. [94] and it is referred to as
the s-model. It is formed by two non-hybridized bands
or orbitals that happened to have the same FS as the
d-model, but the composition of the hole pocket is 100%
one band (or orbital) while the electron pocket is 100%
the other.

The discussion in Ref. [94] is very detailed and read-
ers are encouraged to consult this reference. Here, it will
only be stated that both models eventually converge to
similar magnetic states (for the parent compound) with
the proper wavevector (7, 0), as shown in Fig. 18. Thus,
an important conclusion is that observing such a mag-
netic state experimentally is not sufficient to conclude
that nesting ideas work since for the s-model the same
state is reached for sufficiently large U. For the s-model
there is an apparent nesting, but the wavevector (m,0)
does not connect Fermi surface states with the same or-
bital composition, thus nesting effectively does not occur
for this model. Knowing the actual orbital composition
of the Fermi surface is crucial for any nesting-based ar-
gument.

In carrying out these calculations, it was observed that
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Fig. 18 Orbital magnetic structure factor at wave vector (m,0)
calculated numerically (Lanczos), reproduced from [94]. (a) Re-
sults for the two-orbital Hubbard model defined elsewhere in
this manuscript that is here called d-model, as a function of
the Coulomb repulsion U and for the values of J/U indicated.
(b) Same as (a) but for the s-model defined in [94] (see also main
text here). Both models eventually lead to the same magnetic or-
der at large U with the proper wavevector for pnictides but the
d-model develops this order rapidly in weak coupling due to nest-
ing, while the s-model needs to reach a robust value of U to stabilize
a qualitatively similar state.

the s-model developed a novel form of magnetism which
is schematically shown in Fig. 19, in the same weak cou-
pling regime where the d-model develops the nesting-
based (m,0) state. This novel state presents order, but
the net magnetic moment at each site cancels because
the orientation of the spin at one orbital is the opposite
as the spin in the other orbital. However, it is obvious
to the eye that the states in Fig. 19 display an ordered
state, namely the spins are developed and they are not
randomly oriented. The reader should consult Ref. [94]
for more details of this fascinating new state.

0 No Vol ) N, e, N Wy
AV 0 N
AN A N e e e e

Fig. 19 Schematic representation of the real-space mean-field
calculated ground states for the s-model when m12 is non-zero (see
Ref. [94] for the notation): (a) Flux phase; (b) Magnetic stripe
phase. The black and white dots represent the orbitals + and —
at each site and the continuous and dashed arrows represent the
MF value of the spin at each orbital. Reproduced from Ref. [94],
Copyright (© 2011 American Physical Society.

8 Fe-based superconductors with an insulator
as parent compound?

One of the most interesting recent developments in Fe-
based superconductors is the realization that some of the
superconducting compounds have an insulator as a par-
ent compound, as opposed to a bad metal. The chemical
formula of a prominent representative of this tendency
is Ko gFes_,Ses. Whether the insulator observed in this
context is a Mott or band insulator is too early to say.
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Moreover, a variety of results suggest that there are va-
cancies in the FeSe planes, that for z = 0.4 form a regular
V5 x+/5 pattern. Neutron scattering results indicate that
the 2 x 2 plaquettes that are defined by this Fe vacancy
arrangement are ferromagnetically ordered and with a
large magnetic moment, and with an antiferromagnetic
effective coupling between them. The reader can consult
Refs. [95-100], and references therein, for more details.
Several theoretical results have been presented address-
ing this interesting state at x = 0.4. A partial list is
[101-106]. In our effort in this area, to be described right
below, a detailed comparison with the results of these
previous theoretical papers can be found. Here, only the
main results presented originally in Ref. [107] will be
briefly reviewed.

Figure 20 displays the state found in the neutron
scattering research for this compound that also ap-
pears prominently in our recent investigations using the
Hartree-Fock approximation in real space [107]. The
other two states are competitors that are very close in
the phase diagram found in Ref. [107].
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Fig. 20 (a) Sketch of the so-called “AF1” state found to be
stable in a robust region of the U — J/U phase diagram in our
HF approximation to the five-orbital Hubbard model, in agree-
ment with neutron diffraction [97]. (b) A competing state dubbed
“AF4” (stable at smaller J/U’s in the next figure). (¢) The C com-
peting state. For (b) and (c), a subset of the 10 x 10 cluster used

is shown. More information can be found in the original reference
[107].

Figure 21 is the phase diagram found in our investiga-
tions of the five-orbital Hubbard model [107]. The exper-
imentally revealed state [97] dubbed “AF1” is prominent
in a similar region of J/U that was previously referred
to as the “physical region”, namely where other previ-
ous efforts have shown that the results of the Hubbard
model are also in agreement with neutron and photoe-
mission efforts [80]. With regards to the actual values of
U, as opposed to a ratio J/U, they are somewhat larger
for the AF1 state than for the magnetic metallic state
of the pnictides [80] (see previous sections in this same
contribution for more details).

The effort reviewed here is just the beginning of a
much more detailed investigation currently ongoing.
Many questions arise, including the role of the vacancies
in stabilizing the state found here, and to what extend
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Fig. 21 Phase diagram of the five-orbital Hubbard model with
V5 x /5 Fe vacancies studied via the real-space HF approxima-
tion to a 10 x 10 cluster, employing the procedure for convergence
described in the original text [107]. With increasing U, clear ten-
dencies toward magnetic states are developed. The realistic AF1
state found in neutron scattering experiments [97] appears here
above J/U = 0.15 and for U larger than 2.5 eV. The notation for
the most important states is explained in Fig. 20 and for the rest
in Refs. [103, 104]. The region with low-intensity yellow circles at
small U is non-magnetic. For more details the readers can consult
the original reference [107].

this state should be labeled Mott or band insulator. Also,
is this insulator truly the parent compound of the super-
conductors that are very close in the phase diagram?
What are the optical and photoemission properties of
this interesting state? Certainly our group will devote
much more work to these topics in the near future.

9 Study of the anisotropy of pnictides via the
optical conductivity

One of the most intriguing experimental results unveiled
in the study of pnictides is the existence of an unexpected
anisotropy in transport properties discovered in de-
twinned single crystals of doped and undoped AFeyAss,
with A=Ba,Sr,Ca. The effect is the largest at low doping
x ~ 2%-4% in Ba(Fe;_,Co,)2As2 but it exists even in
the undoped limit « = 0. Details of these experimental
results can be found in Refs. [108-110]. Several theoret-
ical publications have been devoted to this topic [111,
112]. Members of our group [113] have recently stud-
ied the optical conductivity of the three-orbital Hubbard
model [74] using mean-field techniques, and indeed ob-
served the presence of an anisotropy, mainly caused by
the fact that near the Fermi surface there is an asymme-
try in the population of the zz and yz orbitals induced by
the magnetic order with wavevector (m,0) that already
breaks rotational invariance [79]. The proposed explana-
tion is more elaborated than this simple statement and
the readers can find details and additional references in
Ref. [113]. Here only a brief summary of the main results
is provided.
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Following well-known computational studies of o(w)
in the context of the cuprates [9], the paramagnetic cur-
rent operators in the two directions of a two-dimensional
layer representing the Fe planes are defined as

jx: Z Z ltll C'Lao’ ’L—‘rl,ﬂa'_h' .)
(il=2,2+9,2-9) o.f,0

Iy = > Y —itif(el  peivipe —hec)
(i0=9.@+9,~@+9) a.B.0

(14)
while the kinetic energy operators are

T, = Z Z t?zﬂ(ci a,0Citl8,0 T h.c.)

(il=8,51 5,8~ ) 0, Br0
Ty: Z Zt zaaC’LJrl;ﬁU—’_hC)
(i,1=9 2+9) @.p,0

(15)

using a standard notation. The total current, up to the
first order term in the external field A = (4., A,), can be
written as J, = (Jo + Ty A,)/N and J, = (j,+T,A,)/N.
The real part of the optical conductivity in the = direc-
tion can be calculated following the steps detailed in Ref.
[9]. From the well-known o(w) sum-rule, it can also be
shown that the Drude weight in the z direction D, is
given by [9]

Tulgo)

De (ol =
2N N

2

| ¢O|Jw‘¢n>|
E, — Ey

DI

n#0

(16)

where ¢ is the many-body ground state, in this case the
mean-field state with (7,0) magnetic order, and ¢,, rep-
resents the many-body excited states, also produced in
the mean-field calculation, with Fy and F,, their corre-
sponding energies. The optical conductivity and Drude
weight in the y direction can be obtained and expressed
similarly. NV is the number of sites. In our calculation, the
Dirac ¢ functions that appear in the expression for o(w)
were regularized as a Lorentzian 6(w) ~ (1/7)e/(w?+€?)
with a small but finite broadening parameter e.

The optical conductivity calculated in the mean-field
approximation following the steps described above is
shown in Fig. 22. It is clear that there is an anisotropy,
namely the two directions are not equivalent. Actually,
the direction that is ferromagnetic has a smaller zero-
frequency weight than the antiferromagnetic direction, a
result that may be found to be intuitively difficult to un-
derstand since studies in manganites often show that a
ferromagnetic spin arrangement is better for transport.
The reader should consult Ref. [113] for a discussion on
why this intuition fails in the present case.

The Drude weights in the two directions are given in
Fig. 23, and they explicitly show the anisotropy that
appears qualitatively similar to that reported in ex-
periments, in the range of couplings where the state is
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Fig. 22 The optical conductivity o(w) in the “physical region”
[80] of the three-orbital model (¢ = 0.02). The unit of o(w) is €2/h.
The couplings are U = 1.0 eV and J = U/4. The AFM direction
(i.e., the x direction for magnetic wavevector (7,0)) has a larger
zero frequency conductivity than the FM direction, as found in ex-
periments (cited in main text). The FM direction also has a peak
at a finite frequency ~ J. Reproduced from Ref. [113], Copyright
(© 2011 American Physical Society.

simultaneously magnetic and metallic. Thus, the over-
all conclusion is that in the “physical region” of the
three-orbital Hubbard model, the optical conductivity at
low temperature is found to reproduce the experiments,
adding to the good agreement found when results were
compared against neutron scattering and angle-resolved
photoemission techniques.
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Fig. 23 Drude weight/m vs. U in the “physical region” [80] of
the three-orbital model, at J = U/4. In this regime, the inequal-
ity Dapm > Dpym holds. As U increases toward the upper limit
shown, the Drude weights in both directions are reduced due to
increasing insulating tendencies, as discussed before. Reproduced
from Ref. [113], Copyright © 2011 American Physical Society.

10 Summary

In this publication, the results gathered by our group
in the area of theoretical studies of Hubbard models for
the Fe-based superconductors have been reviewed. Re-
sults by several other groups were mentioned and cited,
but the focus was on our publications that rely on mean-
field approximations and computational techniques such
as the Lanczos method, and a comparison of our results
against a variety of experiments. It has been shown that
the Hubbard model presents a region of parameter space
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where the ground state properties are in agreement with
neutron scattering, photoemission, and transport mea-
surements. In addition, a variety of conceptual issues
have been addressed here, and in the cited references, in-
cluding interorbital pairing tendencies, competition be-
tween d and s wave superconductivity, influence of Fe
vacancies, possible charge stripe states, nesting effects,
and other interesting topics.

The field of Fe-based superconductors is rapidly evolv-
ing from the early days where simple weak coupling ideas
appeared to work, particularly for 1111 compounds, to
the present status where many challenges, such as the
presence of superconductors with insulators as parent
compound, lead us to revisit notions such as the possible
relevance of strong correlations in this type of materials.
The study of multiorbital Hamiltonians in this context,
such as the Hubbard model, defines a “grand challenge”
to theorists since there are few many-body tools avail-
able to gather reliable information about these complex
models. At present, most of the progress is being made
via mean-field approximations, but the next step is to
develop more accurate tecniques. The fascinating area
of research defined by pnictides and chalcogenides surely
will receive the focus of both theorists and experimen-
talists for a long time, since developing a working theory
for high critical temperature superconductors is among
the most important conceptual topics of research in con-
densed matter physics at present.
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